Application of Stopped-Flow and Time-Resolved X-Ray Absorption Spectroscopy to the Study of Metalloproteins Molecular Mechanisms
نویسندگان
چکیده
1.1 Metalloproteins as mediators of life processes Revealing detailed molecular mechanisms associated with metalloproteins is highly desired for the advancement of both basic and clinical research. Metalloproteins represent one of the most diverse classes of proteins, containing intrinsic metal ions which provide catalytic, regulatory, or structural roles critical to protein function. The metal ion is usually coordinated by nitrogen, oxygen, or sulfur atoms belonging to amino acids in a polypeptide chain and/or in a macrocyclic ligand incorporated into the protein. The presence of a metal ion rich in electrons allows metalloproteins to perform functions such as redox reactions, phosphorylation, electron transfer, and acid-base catalytic reactions that cannot easily be performed by the limited set of functional groups found in amino acids. Approximately onethird of all proteins possess a bound metal1, and almost half of all enzymes require the presence of a metal atom to function2. The most abundant metal ions in vivo are Mg and Zn, while Fe, Ca, Co, Mn, and Ni are also frequently observed. Metalloproteins play important roles in key biological processes such as photosynthesis, signaling, metabolism, proliferation, and immune response 3-5. For instance, the principal oxygen carrier protein in human, hemoglobin, uses iron (II) ions coordinated to porphyrin rings to bind the dioxygen molecules; calmodulin is a calcium-binding protein mediating a large variety of signal transduction processes in response to calcium binding; cytochromes mediate electron transport and facilitate a variety of redox reactions using iron, which interconverts between Fe2+ (reduced) and Fe3+ (oxidized) states; and many proteolytic enzymes contain zinc ions in their active sites that is highly crucial for peptide bond hydrolysis reaction.
منابع مشابه
X-ray Absorption Spectroscopy and Coherent X- ray Diffraction Imaging for Time-Resolved Investigation of the Biological Complexes: Computer Modelling towards the XFEL Experiment
The development of the next generation synchrotron radiation sources – free electron lasers – is approaching to become an effective tool for the time-resolved experiments aimed to solve actual problems in various fields such as chemistry, biology, medicine, etc. In order to demonstrate, how these experiments may be performed for the real systems to obtain information at the atomic and macromole...
متن کاملEvaluation of absorption efficiency of Zeolite ZSM-5 in the removal of styrene vapors
Background: Volatile organic compounds (VOCs) are one of the most important and prevalent air pollutants. The vapor produced as a result of the vaporization ‎of these compounds, even at very low concentrations, is harmful to the environment and human health. Thus, the aim of this study was to evaluate the removal of styrene vapor from the air flow using Zeolite ‎(ZSM-5) in a continuous ...
متن کاملA Review of the Applications of Synchrotron Radiation in Archaeological Sciences
The scientific research regarding investigation, characterization and protection of the archeological specimens is manifested through a notable participation of multidisciplinary subjects and experts, scientists and archeometrists. One of the main principals which are considered by archaeometrists in the study of the precious specimens is the utilizing nondestructive methods. As an example, in ...
متن کاملA High-Resolution Large-Acceptance Analyzer for X-ray Fluorescence and Raman Spectroscopy
A newly designed multi-crystal X-ray spectrometer and its applications in the fields of X-ray fluorescence and X-ray Raman spectroscopy are described. The instrument is based on 8 spherically curved Si crystals, each with a 3.5 inch diameter form bent to a radius of 86 cm. The crystals are individually aligned in the Rowland geometry capturing a total solid angle of 0.07 sr. The array is arrang...
متن کاملBonding in liquid carbon studied by time-resolved x-ray absorption spectroscopy.
Even the most basic properties of liquid carbon have long been debated due to the challenge of studying the material at the required high temperature and pressure. Liquid carbon is volatile and thus inherently transient in an unconstrained environment. In this paper we use a new technique of picosecond time-resolved x-ray absorption spectroscopy to study the bonding of liquid carbon at densitie...
متن کامل